翻訳と辞書 |
Fully characteristic subgroup : ウィキペディア英語版 | Fully characteristic subgroup In mathematics, a subgroup of a group is fully characteristic (or fully invariant) if it is invariant under every endomorphism of the group. Every group has itself (the improper subgroup) and the trivial subgroup as two of its fully characteristic subgroups. Every fully characteristic subgroup is a strictly characteristic subgroup, and ''a fortiori'' a characteristic subgroup. The commutator subgroup of a group is always a fully characteristic subgroup. More generally, any verbal subgroup is always fully characteristic. For any reduced free group, and, in particular, for any free group, the converse also holds — every fully characteristic subgroup is verbal. See also characteristic subgroup. ==References==
* *
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Fully characteristic subgroup」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|